Friction stir welding (FSW) is a solid-state joining process used to join two similar and dissimilar materials below the liquidus temperature of the material. It is a recently developed technique by The Welding Institute (TWI) in 1991. The advantages of FSW over conventional welding techniques had led to its advancements in almost all the industrial sectors. The increasing demand for the high strength to weight ratio components has led to various materials in industries such as polymers, ceramics, metals, composites, etc.
Mahesh VP, Sooraj Patel, Anurag Gumaste, Amit Arora. “Joining of Polymer Matrix Composites Through Friction Stir Processes”. In Encyclopedia of Materials: Composites (pp. 352–379).
A three dimensional heat transfer and material flow based model using experimentally measured thermo-physical properties has been developed for friction stir welding (FSW) of Cu-0.8Cr-0.1Zr alloy. CuCrZr alloy is a precipitation hardened copper alloy …
Additive manufacturing of titanium alloy Ti-6Al-4V has significantly increased over the past few years, primarily due to its broad application over the conventional manufacturing process for complex and near net shape production. However, …
A heat transfer numerical model is developed for friction stir welding of dissimilar materials Al 6061 and AZ31 alloy. Thermo-physical properties were experimentally determined for the stir zone and compared with the base alloys. Experimentally …
High thermal and electrical conductivities, corrosion resistance and relatively good strength lead to use of copper and its alloys for several engineering applications. Copper alloys also find application in the nuclear industry for manufacturing …
Understanding tool wear during friction stir welding (FSW) is important for joining of high melting point metallic (HMPM) materials. Heat transfer and material flow based models developed in past have improved understanding of the FSW process. …
CuCrZr alloy (Cu-0.8wt-%Cr-0.1wt-%Zr) and 316L stainless steel (Fe-0.03wt-%C-16wt-%Cr-10wt-%Ni) plates were successfully friction stir lap welded resulting in significant mechanical mixing of the two matrix elements, Cu and Fe, in the stir zone. The …
Joining of high strength materials using friction stir welding (FSW) is difficult due to severe tool wear and change in the shape/size of the tool. However, quantitative understanding of tool wear during FSW of high melting point metallic materials …