Back-of-the-envelope calculations in friction stir welding–Velocities, peak temperature, torque, and hardness

Abstract

Given the complexity and resource requirements of numerical models of friction stir welding (FSW), well-tested analytical models of materials flow, peak temperatures, torque, and weld properties are needed. Here an approximate analytical technique for the calculation of three-dimensional material flow during FSW is proposed considering the motion of an incompressible fluid induced by a solid rotating disk. The accuracy of the calculations is examined for the welding of three alloys. For the estimation of peak temperatures, the accuracy of an existing dimensionless correlation is improved using a large volume of recently published data. The improved correlation is tested against experimental data for three aluminum alloys. It is shown that the torque can be calculated analytically from the yield stress using estimated peak temperatures. An approximate relation between the hardness of the thermomechanically affected zone and the chemical composition of the aluminum alloys is proposed.

Publication
Acta Materialia, 59(5)(2020-2028)
A. Arora, T. DebRoy and H. K. D. H. Bhadeshia, 2011. Back of the envelope calculations in friction stir welding – velocities, peak temperature, torque, and hardness, Acta Materialia, 59(5): 2020-2028.
Avatar
Amit Arora
Associate Professor of Materials Engineering

Amit Arora is Associate Professor of Materials Engineering at Indian Institute of Technology Gandhinagar. He leads the Advanced Materials Processing Research Group at IIT Gandhinagar which works in the area of numerical modeling of welding and joining processes, additive manufacturing processes, and friction stir welding and processing including tool wear during FSW, numerical modeling of dissimilar FSW, and mechanical and electrochemical characterization of friction stir surface composites. Recent works have been published in journals such as Wear, Metallurgical and Materials Transactions A, Journal of Materials Processing Technology, International Journal of Advanced Manufacturing Technology, Heat and Mass Transfer.

Related