Joining of high strength materials using friction stir welding (FSW) is difficult due to severe tool wear and change in the shape/size of the tool. However, quantitative understanding of tool wear during FSW of high melting point metallic materials is very limited. Here we present quantitative wear analysis of H13 steel tool during FSW of CuCrZr alloy. Higher amount of total tool wear is observed for faster tool rotational speeds, and slower traverse speeds. Progressive wear rate shows similar relationship with these process parameters during initial traverse stage. With further tool traverse the wear rate decreases significantly and is not much affected by the process parameters. The quantitative wear study provides insights about tool wear during FSW process and would be useful to better estimate and improve tool life. This would also be helpful to optimize the process parameters and tool shape to reduce tool wear during FSW of high strength materials.